A comparison of NCO and NCA transfer methods for biological solid-state NMR spectroscopy.
نویسندگان
چکیده
Three different techniques (adiabatic passage Hartman-Hahn cross-polarization, optimal control designed pulses, and EXPORT) are compared for transferring (15)N magnetization to (13)C in solid-state NMR experiments under magic-angle-spinning conditions. We demonstrate that, in comparison to adiabatic passage Hartman-Hahn cross-polarization, optimal control transfer pulses achieve similar or better transfer efficiencies for uniformly-(13)C,(15)N labeled samples and are generally superior for samples with non-uniform labeling schemes (such as 1,3- and 2-(13)C glycerol labeling). In addition, the optimal control pulses typically use substantially lower average RF field strengths and are more robust with respect to experimental variation and RF inhomogeneity. Consequently, they are better suited for demanding samples.
منابع مشابه
Utilizing afterglow magnetization from cross-polarization magic-angle-spinning solid-state NMR spectroscopy to obtain simultaneous heteronuclear multidimensional spectra.
The time required for data acquisition and subsequent spectral assignment are limiting factors for determining biomolecular structure and dynamics using solid-state NMR spectroscopy. While strong magnetic dipolar couplings give rise to relatively broad spectra lines, the couplings also mediate the coherent magnetization transfer via the Hartmann-Hahn cross-polarization (HH-CP) experiment. This ...
متن کاملEfficient resonance assignment of proteins in MAS NMR by simultaneous intra- and inter-residue 3D correlation spectroscopy.
Resonance assignment is the first step in NMR structure determination. For magic angle spinning NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX, NCOCX, CONCa) that utilize SPECIFIC-CP (15)N-(13)C transfers. However, the SPECIFIC-CP transfer efficiency is often compromised by molecular dynamics and probe performance. Here we show that one-bond ZF-TEDOR ...
متن کاملSolid-state NMR techniques for the structural determination of amyloid fibrils.
This review discusses the solid-state NMR techniques developed for the study of amyloid fibrils. Literature up to the end of 2010 has been surveyed and the materials are organized according to five categories, viz. homonuclear dipolar recoupling and polarization transfer via J-coupling, heteronuclear dipolar recoupling, correlation spectroscopy, recoupling of chemical shift anisotropy, and tens...
متن کاملHigh dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins
Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested ...
متن کاملBiological membrane structure by solid-state NMR.
Nuclear magnetic resonance (NMR) spectroscopy, and particularly solid-state NMR spectroscopy, is a method of choice to study the structure and dynamics of both the lipid and the protein components of model and biological membranes. Different approaches have been developed to study these systems in which the restricted molecular motions result in broad NMR spectra. This contribution will first p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of magnetic resonance
دوره 214 1 شماره
صفحات -
تاریخ انتشار 2012